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AN ANALYSIS OF THE EFFECT OF DESIGN AND MEASUREMENT ERRORS
ON PUMP PERFORMANCE PARAMETERS
by Douglas A. Anderson

Lewis Research Center

SUMMARY

A method is presented for calculating the effects of design and measurement errors
on pump performance parameters. Error equations and charts are presented which
relate the amount of error in a given performance parameter to the amount of error in
a given design or measured variable. The design error equations were developed for a
blade element design procedure. The measurement error equations apply to pump tests
in which radial surveys of pressure and angle measurements are made.

Some specific applications of the error analysis equations are discussed. The com-
puted error values provide a criterion of how large a change in a performance parame-
ter must be to be considered significant. This is useful when comparing design per-
formance to measured performance or when comparing the measured performance of
different pumps. The error equations may also be used to determine the sensitivity of
a given design to design errors and manufacturing tolerances, or to assess the relative
importance of several measurement errors in a particular test configuration. The ap-
plications often require that the effect of two or more errors on a given performance
parameter be considered. This is done by using the concept of the uncertainty interval,
which is explained in this report. Finally, an example is given which demonstrates the
application of the measurement error analysis to some typical test data.

Some general trends of the sensitivity of the performance parameters to design and
measurement errors were deduced. The sensitivity to design errors generally in-
creased with increasing stagger angle or decreasing loading. For measurement errors,
no general trends with stagger angle or loading were indicated.

The error equations were developed for axial flow rotors, but are not limited to
this type of blade row. Modifications to the equations are presented which allow them
to be applied to stators. Another modification is mentioned which allows them to be ap-
plied to mixed-flow impellers.



INTRODUCTION

The importance of measurement errors in a pump test program is generally rec-
ognized. In fact, it would be hard to evaluate any set of test data without developing
some intuitive feeling about the effect of errors. However, mathematical techniques are
available which allow a methodical analysis of the effect of measurement errors on the
resulting flow and performance parameters. Using these techniques, the amount of
error to be expected in the performance parameters can be calculated from estimates of
the errors introduced by the different measurements. An error analysis can also be of
use in planning instrumentation by showing which measurement is likely to introduce the
largest errors.

An analysis of the effect of errors should also be useful in a pump design system.
Such an analysis would show the sensitivity of a given design to design errors and manu-
facturing tolerances. It would allow estimates of design precision, the limits around the
design point within which the pump performance may be expected to lie with reasonable
certainty. Also, an error analysis would show which step in a design procedure is the
most critical source of error. These examples show just a few of the applications of
an error analysis to pump design procedures and test results.

An error analysis was developed in reference 1 and applied to axial flow compres-
sors. Equations were derived which relate the amount of error in a given compressor
performance parameter to the amount of error in a selected design variable or measured
variable. The methods used herein to derive the error equations for axial flow pumps
are the same as used in reference 1, but almost all of the derived error equations are
different. They are different because different parameters are used to describe pump
performance, due to the incompressibility of the pump flow, and the effect of cavitation.
Further differences between the pump and compressor error analyses arise because of
different ranges of interest for some parameters (e.g., blade stagger angle and flow
coefficient) and slightly different measurement techniques.

The purpose of this report is to present the methods which can be used to calculate
the effects of both design errors and measurement errors on pump performance. Equa-
tions are derived which relate the amount of error in a given pump performance param-
eter to the amount of error assumed in a given design or measured variable. These
equations apply to flow along streamlines or along blade elements. The equations are
presented in the form of carpet plots. Whenever feasible, the pump error analysis is
presented in 2 manner similar to that of reference 1. Some uses of the error analysis
equations are suggested. The effects of changes in stagger angle and loading on the
sensitivity of the performance parameters to design and measurement errors are dis-
cussed. An example is given in which the measurement error equations are applied to

some typical pump test data.



DERIVATION OF EQUATIONS
General Error Analysis Equations

Consider a function of n variables, f(xl, X9y + « s xn). The change in f due to
a small change in one of the variables Xm is given approximately by

_of
Af = P Ax (1)
m
(Symbols are defined in appendix A.) TIf the error in each variable Xy, Xg, . . ., X 18

known, the resulting error in the function f can be computed from

af =% Ax1+_a_f__Ax2+. R SN (2)

8x1 axz 0X n n

where A denotes a known or calculated value of the respective error. This equation
can be used for systematic errors, which are errors of known sign and approximately
known magnitude.

However, the errors encountered in the design and measurement analyses are more
likely to be of the type called random errors or uncertainties. Reference 2 discusses
the nature of these uncertainties and how they should be treated statistically. (Uncer-
tainty, as defined in ref. 2, is the more precise term.) The relative size of the error
or uncertainty can be given in terms of an uncertainty interval as used in references
1and 2. If, for example, for a measured pressure of 50 psi, there is an estimated
90 percent probability that the true pressure is between 49 and 51 psi, the uncertainty
interval is 2 psi for this probability. If the uncertainty intervals of the other measured
variables at the same probability are known, the uncertainty interval of the parameter
f for this probability can be computed from

2 2 ' 2
WH2 = (2 ax )+ (Zoaxy) ..+ A ax (3)
0X4 0Xo 0X,

In this equation, A refers to an uncertainty interval. (Except for a difference in nota-
tion, this is the same as eq. (7) of ref. 2.) It is assumed that all of the errors Axy,
Ax,, etc., have a normal distribution, but the equation is sufficiently accurate for any
distribution likely to occur. It is also assumed that the variables Xy, Xg, etc., are in-
dependent; that is, a change in one will have no effect on the values of the others.



N
It is often more convenient to%eal with dimensionless terms Af/f, Axl/xl, ete.

These terms are easily expressed as percentage errors, and a simplified form of the

error equations often results. Using dimensionless terms, equation (2) for systematic

errors might become

£ (%1 of \A*1 (10
f—-<}-axlx ¥ ;ax AX2+'.. @
/¥ 2

This equation shows the error Axl/x1 in dimensionless form, but not AXg. The mod-
ified error equations will generally have a mixture of both forms. The form Ax is
better for angles, but the dimensionless form, Ax/x, is usually more convenient for all
other variables. The corresponding equation for random errors (eq. (3) modified) is

2
2 X AX 2
(_A_f) _ <_1_af_>_1 N [(—1—“—)“2] . (5)
f f axl X4 f ax2

Design Errors

The design error analysis was developed for a blade element design procedure such
as is discussed in reference 3. In a blade element design procedure, the hydrodynamic
design (calculation of velocity diagrams and performance parameters) is conducted along
selected blade elements. Blade sections to achieve the desired performance are then
selected. In a design procedure, certain quantities, which shall be called the design
variables, are chosen by the designer or determined from appropriate design correla-
tions. The design variables selected for this analysis are

Inlet and outlet radius, ry and ry

Inlet and outlet axial velocity, VZl and VZZ

Wheel speed at the tip, Ut

Inlet total head, Hy

Inlet flow angle, B4

Outlet relative flow angle or deviation angle (B’z or 0)

Loss coefficient, w

From the design variables, the pump performance parameters are computed using
the design equations (eqs. (B1) to (B12), appendix B). The performance parameters
included in the design error analysis are



Inlet and outlet velocities, Vl and V2

Inlet relative flow angle or incidence angle, 6'1 or i

Outlet flow angle, 32

Ideal head-rise coefficient, v

Head-rise coefficient, g

Blade element efficiency, n

Diffusion factor, D
Although AH; and AH are often used instead of y; and y, they are not included
among the performance parameters, since the percentage errors are the same for AHi
and y;, and for AH and y; that is, A(AHi)/AHi = Az,vi/xpi and A(AH)/AH = Ay /).

The values of the design variables, together with their inherent inaccuracies, are
the necessary inputs required to do an error analysis of a design procedure. The values
of the design variables \ AT By, and Hy are known for selected values of r; from the
analysis of the flow through the previous blade row or, for the first stage rotor, from
the analysis of the flow through the pump inlet. The errors in VZl’ Bl, and H1 are
the result of the accumulation of errors in all upstream blade rows. To estimate the
errors in the design variables &, w, ry, and VZZ’ which are obtained from correlations
with other parameters (e.g., the w against D correlation, radial equilibrium equa-
tion, etc.) requires consideration of both the errors in these other parameters and the
accuracy of the correlations used. As blade elements should ideally lie along stream-
lines, any difference between an assumed or calculated ry value and that of a stream-
line through the corresponding inlet radius is regarded as an error in ry.

The design variable H1 is not included in the design error formulas, since none
of the performance parameters depend directly on Hl' No equations are given for de-
sign errors in ry, as ry is regarded as a selected, nonvarying input. Errors in Ut
are regarded as measurement errors rather than design errors and consequently are
not included in the design error formulas. However, a designer may wish to include
their effect in estimates of design precision (how closely the actual performance is ex-
pected to meet the design specifications).

For systematic design errors, the error in a particular performance parameter f
is given by

v AV v AV
A_f=<21 at 21+<_13f)A61+<zz a > Z2+(lif_'_>A3v2
f f oV, Vg, \foBg £ aVye) Vg \f 8

_ T Ar
+ -l—d:f Ao+ 20 ) 2 (6)
f dw f ar2 ry




This is simply equation (4) with Xy, X, etc., identified as appropriate design variables.
For the case of random errors, the uncertainty interval in f is related to the uncer-
tainty intervals in the design variables by

2 2
af\2 _ |(Vz1 o \2Vzi 10t Voo 12, [(Vz2 ot \AVaz2 1 af 2
—1 = + AByl + + AB
f £ 8V, Vg, £ 3By £ Wyl Vg £ op}

2
2 T Ar
+ <_12>Aa L|{-20f \ "2 )
f ow f ar2 Ty

These equations were derived assuming that the design variables are independent.
However, in most design systems some of the design variables are interrelated (w, D
correlation, etc.) so that an error in one may provide errors in some of the others.
The analysis of such interactions is beyond the scope of this report. However, the ef-
fects of these interactions should be small compared with the direct effects of design
errors with one exception. The outlet axial velocity VZ2 is strongly affected by the
values of 6'2 and w through the radial equilibrium equation.

The treatment of the variable ry requires careful consideration. Like all of the
other variables considered in the error analysis, ry will have a certain amount of error.
But as the outlet design and performance parameters are usually specified or calculated
at given values of ry, it is not convenient to have to deal with errors in ry. Errors in
ry are especially troublesome if the calculations are to be extended downstream to sub-
sequent blade rows. One remedy is to modify the error values assigned to the other
parameters to include the effects of uncertainties in ry. Then ro can be treated as if

its values were fixed.

Assume that a streamline, nominally at radius Ty, it actually at radius rg + Arg.
The error in f at Iy + ATy would be given by the appropriate equation (egs. (2) to (7))
except that the Ar,y term would be zero. Since sz, Bz, and w are the only design
variables affected by a change in Ty, the value of f at Ty is related to the value of f

at ry + Ar2 by

dv dg: ~
f(rz) = f(r2 + Ar2) - < of Z2 + af' 2 + i_ 9—”—) Iy (8)
0Vy, dry 3y dr, dw dry

where dVZ:Z/dr2 simply refers to the slope of the graph of sz plotted against Ty,
and similarly for B'z, w, and f. From the definition of the total derivative,



dav dp; -
af _ of |, _of z2  of P2 of dw )

- =
dr2 arg Vg9 dr2 3By dro dw dr2

Thus, the following equation is equivalent to equation (8),

f(ry) = f(ry + Ar,) + ot _df VA (10)
2 2 2 3 2
ro dr2

Consequently, to get the correct value of Af (if the value of ry is to be regarded as
fixed), of/ dry in equations (2) to (7) should be replaced by

|
_( o Vza o %P2 o d?o)
—= R et
WVgo drg 832 dr2 ow dr2

or the equivalent expression

of df

81"2 dr2

The resulting error equations are
(1) For systematic errors and a fixed r, value (using dimensionless terms as in

eq. (6)),

v AV v AV _
_A_f=<Z1 of z1+<1 af>ABI+<zz ot \ Z2+<_lif_)AB:2+<_lgf_>Aw

, L
f £ aVZl/Vzl £ 28, £ aVZZ/VZ2 £ 28l f oo

. }(_af_ - _d.f_)Arz (11)
f 8r2 dr2

(2) For random errors and a fixed ry value,

2 2
at\2  |[Vz1 o \AVz1 1 of 2 |fVza a \AVz2
(-) = || — ——— + = —== ABl + || = — }—
£ t v,y Vg f 9B £ Wy Vgy

fesphal 2=

2
+ |:_1<.a_f_ - i)Arz} - (12)
f\dry dry
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The replacement of of/ ory by [(af/ arz) - (df/drz)] should not be considered as a sub-
stitution, and the two expressions are not equivalent. Equations (6) and (7) are for an
ro which has an error Ar, while equations (11) and (12) are correct for a fixed rg.

Measurement Errors

The measurement error analysis applies to a pump test in which radial surveys of
total and static pressure and of flow angle measurements are made, as was done in ref-
erences 4 and 5. The measured variables considered in this analysis are

Inlet and outlet velocity, V1 and V2

Inlet and outlet flow angle, Bl and 32

Inlet and outlet radius, ry and ry

Net positive suction head, Hg,

Head rise, AH

Tip speed, Ut

Velocity is not a directly measured quantity, but is computed from the measured
value of velocity head. However, it is more convenient to use velocity in the error equa-
tions, and the percentage error in velocity is simply half the percentage error in veloc-
ity head. When velocity head is measured directly, as done in references 4 and 5, the
accuracy is much better than if the velocity head were obtained from separate measure-
ments of total pressure and static pressure.

From the measured variables, the pump performance parameters are calculated
from appropriate equations (eqs. (B46) to (B56)). The performance parameters included
in this analysis are

Inlet and outlet flow coefficient, ¢, and ¢,

Inlet and outlet relative velocity, V] and V'2

Inlet relative flow angle or incidence angle, B’l or i

Outlet relative flow angle or deviation angle, B'z or §

Head-rise coefficient, ¢

Ideal head-rise coefficient, y/,

Blade element efficiency, n

Loss coefficient, w

Diffusion factor, D

Cavitation number, k
The variables \2T sz, AH, and AHi are not included in the performance param-
eters, since their percentage errors are the same as for Y1 Po Y, and z,l/i, respec-
tively, except when caused by errors in Ut' An error in Ut does not affect the accur-
acy of the values of VZl’ VZ2’ and AH, but the error in AH; is given by

A(AHi)/AHi = —Azpi/d/i.



The measurement error equations (eqs. (B57) to (B93)) relate the amount of error
in a given performance parameter to the amount of error in a given measured variable.
They are derived from equations (B46) to (B56) in appendix B.

There are a number of factors which cause measurements errors. One is the in-
herent errors of the instrumentation and data recording systems. The error estimates
given in many data reports consider only this source of error. However, in addition to
this, the effects of pressure and flow fluctuations, cavitation, etc., on the pressure and
angle measurements must be considered. Also, the values of ry and ro may be in
error due to inaccuracies in probe positioning.

Since blade element test data are generally presented as plots of the measured
variables and performance parameters against ry or ry, it would be preferable not to
have any uncertainties in these variables. This can be done if the errors in the other
parameters are modified to account for the errors in ry and ro, using the method de-
veloped in the design error section of this report. The error in a calculated perform-
ance parameter f due to an error in radial probe position is given by

dx dx
Af:(?i_g.i_>Ar=- of 1+af 2+...Ar (13)
Jdr dr axl dr ax2 dr

where r stands for either ry or re. The total derivative df/dr is simply the slope
of the curve of f plotted against r. The resulting error equations are
(1) For systematic measurement errors, where ry and ro are regarded as fixed
values

v AV v AV U, .+\AU
_f=<_18f> 1+<_1af)A31+<_2_ ot 2+(li>A32+<_£ af> t
t \t av /v, \foeg, £ ov,)vy \I 3B, f au,) U,

av g dH
N (Ag 3 \A(AH) <_1 of >AH __1<af 1,08 P o sv)Arl
V.

sV
f 2AH/ AH \f aH, f\ev,dr; op;dr; oH_, dr;
av a8 dH
__1<af 2, of %2 o 2>Ar2 (14)
£\aV, dr, 8By dr, oH, dr,

(2) For random measurement errors, where ry and r, are regarded as fixed
values



2 2
2 [/v AV 2 [/v AV 2
). [(_1 af)__l] [ 2 geer] [(_z i>__2] [ 2 Yoe]
£ A f o8 £ av,) v, £ ap,
U AU ]2 9 2
t of \AUt AH of \A(AH) 1 of
i + (AR Z\ALHT (1% Wy
t au,) U, f AW AH £ OH
1/t Vi o 9By 5 dHgy ?
+ = + + Ary
f\ovy drl B4 drl aHSV dry

2
dv dg dH
+ [—l(af 2 + of 2 + of 2>Ar2] (15)
f\aVy dry 8By dry oH, dry

It is also correct to use

and
_1_(_a_f_ i i)Arz
f ar2 drz

In the measurement error equations presented for Af/Ar in appendix B, the form is
used which is judged most convenient for calculations. However, since ry and ro, are
usually changed together, it is not possible to determine the individual values of df/drl
and df/ dr, from a graphically determined value of df/dr. The value of df/dr may be
used for df/dr2 if £ is not a function of ry or for df/dr1 if £ is not a function of
ry. For radially constant inlet total pressure, which is a normal test condition for inlet
stages, de/drz can be replaced by d AH/dr,.

Presentation of Equations

The error equations and the equations from which they are derived are listed in ap-
pendix B. The equations are presented in the form judged most convenient for use in

10



TABLE I. - CLASSIFICATION OF THE ERROR EQUATIONS AND CARPET PLOTS

ACCORDING TO PERFORMANCE PARAMETER AND DESIGN OR

Measured per-

formance pa-
rameter

MEASURED VARIABLE

(a) Design errors

Design per-
formance
parameters VZI
Eq. | Fig.
\Z B13| ---
P - ---
3'1 B18 | 3(a)
By
¥y B23| ---
v B30 | 5(a)
n B34 | 2(a)
D B38| 6(a)
Vi 1

Eq. Fig. Eq.

B57 | --mo--- B58

B60 | 3(a) B61

B66 |------- B67

B73 | ------- B73

B76 | 2(a), 3(b)} B77

B84 | 6(a) B85

B91 | 2(a), 3(b)| B92

Eq.

Bl4

B25
B31
B35

B3°

Design variables

By Vgo B'2 or § | w re

Fig. Eq. | Fig.| Eq. | Fig. ! Eq. | Eq. Fig.

1 UUNURE I RN N (I IS

——————— B15 | 2(a) | B16 | 2(b) | --~ | B17| 2(c)

3(b) B el I B B B B

——————— B20 | 3(a) { B21 | 3(b) | --- | B22 | 3(a)

4(a) B26 | 4(b) | B28 | 4(c) | --- | B29 | 4(d)

4(a), 5(b) | B32 | 4(b) | B32 | 4(c) | B33 | B32 | 4(d)

2(b), 4(a) | B36 | 4(b) | B36 | 4(c) | B37 | B36 | 4(d)

6(b) B40 | 6(c) | B41 | 6(d) | --- | B42 | 7(a).(b)

(b) Measurement errors

Measured variables

Vo By ry Ty AH | Hgy
Eq. | Fig. | Eq. | Fig. | Eq. | Fig. | Eq. | Fig.} Eq. | Fig.{ Eq. | Eq.
—e |- -t - - - | --{BBO |- | --- ] ---
B57 | --- |B58| 1 SR (TR (SN U <1115 (S [, .
---|---|---1---|B62|3(a)|---|--- | B63|3(a)|---|---
B60 | 3(a) (B61| 2(a) | --- | -~- | B62 | 3(a) | B63 | 3(a) | --- | ---
mee { e e e o= | == | === | --- | B64 | --- | B65 | ---
B6° | --- | B69| --- | B70 | 4(a) | B71 | 4(a) | B72 | --- {( --- [ ---
B73 ) --- |B73| --- |B73| 4(a) | B73 | 4(a) | B74 | --~- | BT5 | ---
B78 | 8{(a) | B79} 8(b) { B8O | -—- | B81 | --- | B82 | 2(c) | B83 | ---
B86 | 9(b) | B87 | 9(c) | B88 | --- | B89 [ --- | B9O | 2(c) | --- | ---
-~ |---1---]---|B93} 2(¢)| --- | -=-- | ~-- | --- | --- | B84
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error calculations. Usually the equations are simpler if dimensionless terms such as
(AV2/V2) and [An/(1 - n)] are used. Some of the equations become much simpler when
Bl is zero; when such is the case, the simplified form is included in the list of equa-

tions.

Carpet plots of some of the equations are presented in figures 1 to 9 to allow quick
calculations. A carpet plot is simply a convenient way of showing a function of two
variables. Each curve shown gives the relation between the function and one of the
variables for a constant value of the other variable. For a function of more than two
variables, a lattice arrangement of carpet plots can be used. Figure 6(a) is an example
showing a function of four variables. The individual carpets are offset so that a french
curve may be used for interpolation between plots. For many of the error equations,
two plots are presented, one plot covering the range of conventional pump operation, the
other covering the higher blade angles typical of inducer operation. Most of the error
functions had considerably different values and/or slopes at high blade angles as com-
pared with moderate blade angles, so a single plot would not be readable at both ex-
tremes.

Not all of the error equations are presented in plot form, since for simple linear
relations this was deemed unnecessary. Some plots are used for more than one error
equation but, to avoid confusion, only one equation is represented in the plot coordi-
nates. Table I gives the equation numbers and figure numbers for the various combina-
tions of performance parameters and design or measured variables. Some of the plotted
values must be changed in sign or multiplied by a constant in order to correspond to a
particular measurement equation; for this reason, one should always refer to the error
equations first before using the plots.

The error equations were derived assuming small errors, but should be sufficiently
accurate for most applications. An error equation gives the sensitivity to an error (i.e.,
the ratio of the change in a performance parameter to the change in a design or meas-
ured variable) at one particular set of conditions (i. e., for particular values of B'l, B'Z,
?9; etc.). A large error may change these conditions enough to significantly change the
sensitivity. In this case, using the initial sensitivity to compute an error is not a good
approximation. This possibility can be checked by comparing the sensitivity at two con-
ditions differing by the amount of the assumed error.

APPLICATION OF THE ERROR ANALYSIS
Design Errors

The design error equations and carpet plots (figs. 1to 9) relate the magnitude of

12



the errors in selected performance parameters to the amounts of errors in individual
design variables. As an example, take the highly loaded rotor data discussed in appen-
dix C, where at a radius ratio of 0. 947 the measured values include v,b = 0. 391,

Bg = 41.7° , and BZ = 49.0° From figure 4(c), a 1° error in Bz results in an error
in Vs and ¢ of -4. 54 percent of the value of 1//2 Since, for no prewhirl Vig = yb a
1° error in Bz gives an error of -0.018 in y; and . Errors in ,82 can be caused
either by design errors in deviation angle or by inaccuracies in the fabrication of the
blade outlet angle. The errors shown by the other design error equations can be deter-
mined in a similar manner.

The error equations can be used to determine the sensitivity of a given hydrody-
namic design to design errors and manufacturing tolerances. The ratio of a 0.018 error
in ¢ toa 1° error in B'z may be regarded as a measure of the sensitivity of Y to
errors in ,3'2. The sensitivity to errors may be important in comparing two competing
designs. If it can be assumed that the size of the errors will not differ much in the
designs being compared, the error equations will show which design is likely to meet its
specifications the closest. It is not necessary to know the actual size of the errors in
making this comparison.

In an iterative design procedure, the output values of one iteration are generally
used to determine the input to the next iteration. A typical design procedure might have
each iteration begin with new values of w, &, and ry. Using the design error equations
or plots, it can be determined whether the difference between the old and new values of
these inputs are great enough to significantly affect the other parameters. Another ap-
proach is to terminate calculations when the differences between the new and old values
of w and & are less than the anticipated design errors. Comparing the new and old
values of ry is usually unnecessary. Values of r, are generally determined from a
radial equilibrium calculation in such a way that specifying «w and § will determine
ry for a given geometry. To summarize, the error equations can be used to set defi-
nite criteria on when to terminate the iterations.

In comparing design performance to measured performance, an error analysis may
help determine the significance of any discrepancy. The question is whether an observed
discrepancy is within the limits to be expected for a given error or combination of
errors. The combined effect of errors in two or more design variables may be calcu-
lated using equation (2) or (3). A similar calculation may be made for measurement
errors, or for a combination of design errors and measurement errors.

Estimates of uncertainty intervals in the performance parameters are obtained if
the effects of random errors in all of the design variables are combined using equa-
tion (7). The uncertainty interval shows the range within which the parameter may be
assumed to lie with reasonable probability. For example, a head-rise coefficient of
0. 37 with an uncertainty interval of 0. 02 for 90 percent probability means that there is

13



a 90 percent chance that the value of { is between 0.36 and 0.38. The uncertainty in-
terval is the most reliable criterion of the accuracy of a set of data and is to be pre-
ferred in making such comparisons as design performance with measured performance.
However, the uncertainty interval is dependent on estimates of errors in all of the design
variables. If one or more of the error estimates are questionable, it may be better to
restrict the comparisons to the design parameters with reasonably accurate error

values.

Measurement Errors

The measurement error equations and charts give the amount of error in selected
performance parameters as functions of the amounts of measurement errors. One use
of the measurement error analysis is to help in planning instrumentation. The error
equations can be used to determine which measurement errors cause the greatest errors
in the various performance parameters. Significant effort would be justified in order to
improve the accuracy of a critical measurement, while only minimal effort should be
applied to a measurement which introduces relatively small errors.

The effects of random errors due to different measurements may be combined using
equation (3). If the errors due to all pertinent measurements are included, the result
is an uncertainty interval in the measured performance parameter. Since it includes
the effects of all known random errors, the uncertainty interval is the best criterion of
normal data variability.

The measurement error calculation is useful in evaluating data trends. It gives an
indication of the amount of data scatter which may reasonably be expected. If the scatter
is small compared with the predicted amount of error, this indicates that the measure-
ments are more consistent than anticipated. The error analysis may also show whether
or not a change in the data is significant. For example, suppose that after a rotor is
modified, the test data show a small increase in the values of blade element efficiency
over the previous test data. It cannot be concluded that the modification improved the
performance unless the differences are greater than can be explained by normal meas-
urement errors. The amount of error to be expected is something to consider when
evaluating any trend in a set of data.

The measurement error analysis is applied to two particular sets of test data in
appendix C. The data chosen for this example (refs. 4 and 5) were for a highly loaded
conventional rotor and for a flat-plate inducer. The results are presented in terms of
uncertainty intervals. Many of the ideas discussed in a general way in this report are
brought out in this example, among them the trends of sensitivity with blade angle and
the use of the error analysis in choosing instrumentation. The example is intended to
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show some of the results which can be obtained from the error analysis and some of the
problems involved in its use and to give an idea of what degree of accuracy to expect in
current pump test data.

TRENDS SHOWN BY ERROR ANALYSIS

Using the carpet plots, some generalizations can be made on how the sensitivity fo
design and measurement errors will vary with different designs. The sensitivity of the
performance parameters to design and measurement errors can be read directly from
the curves of figures 1 to 9. The following paragraphs summarize the trends of sensi-
tivity with changes in stagger angle and blade loading.

The effects of a change in stagger angle on the sensitivities to design and measure-
ment errors are listed in table II. The table shows how the sensitivity of a particular
performance parameter (shown in the column on the left) to errors in a given variable
changes when stagger angle is increased. The intention of this table is to allow general
trends with stagger angle to be visualized. So if a particular trend differs depending on
the values of the flow angles, no attempt is made to show the trend under all possible de-
sign conditions. Rather, the trend under the most typical design condition is listed in the
table, along with the restriction under which this trend applies.

For design errors, (table II(a)) the sensitivity trends show a strikingly regular pat-
tern. The sensitivity of all of the pertinent performance parameters to errors in the
outlet velocity diagram variables VZZ’ B'z, and roy increase as stagger angle in in-
creased. (The sensitivity of D to errors in re is a possible exception.) In constrast,
the sensitivity to errors in the inlet velocity diagram variables VZl and B either de-
crease or do not change as stagger angle is increased. For typical pump designs, the
sensitivity to errors in sz, B'z, and ry is considerably greater than the sensitivity to
errors in V,, and g;. Consequently, the total amount of error in the performance pa-
rameters follows the trend of the former variables.

The effects of a change in blade loading on the sensitivity to design errors were also
determined. (These results are not included in table II.) The sensitivity of all of the
performance parameters to errors in sz, Bz, and ry decreases as loading is in-
creased. As loading has no direct effect on the inlet velocity diagrams, the sensitivities
to errors in VZl and Bl are not affected. The general conclusion is that the sensi-
tivity to design errors in all of the performance parameters except V1 and B'l tend to
increase with increasing stagger angle or decreasing loading. For an inducer, the com-
bination of high stagger angle and light loading make the design very susceptible to de-
sign errors.

The sensitivity of the measured performance parameters to measurement errors
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TABLE II. - TRENDS OF SENSITIVITY TO ERRORS WITH INCREASING STAGGER ANGLE

(a) Design errors

aStagger angle does not change the sensitivity.
No consistent trend of sensitivity with stagger angle.

CParentheticals show conditions under which the trend applies.

By > 45% or By + By > 90°,
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is also affected by changes in stagger angle and blade loading. However, unlike the de-
sign error case, the sensitivity trends of the measurement errors showed no regular
pattern. The individual trends with stagger angle are listed in table II(b). For increases
in blade loading, the sensitivity to errors either increases or does not change for all of
the measurement error equations. The overall level of measurement errors (due to all
sources of error), as compared with design errors, will in general be less affected by
changes in stagger angle or blade loading.

Some of the sensitivity trends are not immediately obvious from the carpet plots.
For example, the sensitivity of ¥, to design errors in 6'2 (fig. 4(c)) increases with
increasing 3'2, but decreases with increasing 32. The trend with stagger angle will
depend on which effect is stronger. In preparing table II, sample calculations were
made for each case in which the trends in Bz and B'z were opposed. It was found that
whenever B'z was greater than Bz, the trend with 3:2 predominated. For most blade
elements in a conventional pump design, 3'2 is greater than Bos consequently, the trend
with 8’2 determines the trend of sensitivity with stagger angle for most blade elements.

Application of Error Equations to Stators

The design equations and measurement equations for stators differ from the related
rotor equations in that, since Ug = 0, there is no distinction between relative and abso-
lute velocities, and ¥y is zero. The stator error equations, which are derived from
the stator design and measurement equations, also differ from the related rotor error
equations. The two sets of error equations are, however, enough alike so that a few
substitutions will produce the stator error equations from the rotor error equations.
Therefore, even through the error equations presented herein were developed for rotors,
they can, with suitable modifications, be applied to stators.

The error equations for stators can be obtained from the listed error equations by
making the following substitutions:

(1) Whenever a relative angle appears, substitute the negative of the absolute angle;
that is, substitute -8, for B'l, -Bgg for By, and -ABy . for ABY.

(2) For Yy, substitute 0.

(3) For all other parameters, substitute the corresponding stator parameter.

(4) In the error equations for D, change the sign of the second term (the term con-
tinuing o). This is required because, in the definition of D=1 - Y_g + AV

vy 20V1
ing (AVS term) is in the opposite direction for a stator than for a rotor.
(5) These substitutions give the correct stator error equation with one exception,

, the turn-
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equation (B42). The sign on the whole equation (not just the second term) should be
charged and (rgVyg - T{V,,)/Vyor, substituted for z,(/i/cpz.
After these substitutions are made, the resulting equation may simplify. For ex-
ample, equation (B15) becomes
Voq v

-coszﬁzs (—tanzﬁzs - 1)
Z2s

2, AVzas AVgag

coszﬁ2S sec

st
Z2s VZzs

The error equations for the performance parameters ., 7, By, and 6'2 become
either meaningless or trivial when applied to stators and would not be included in a
stator error analysis. For stators, 7 is not defined, Yy is identically zero, and B'l
and B'z are the same as and B9 which are input variables in the stator error equa-
tions. However, the error equations in which B'z appears as a design variable should
not be dropped from the analysis. Using the substitutions, these equations are trans-
formed into stator error equations in 82 which are necessary for a complete error
analysis.

The stator counterpart of head-rise coefficient o can be defined using the value
of Ut from the preceeding rotor. The error equations derived for xps will then give
the effect of stator errors on the stage head-rise coefficient.

For stators, the design and measurement equations for the inlet parameters Vg
and ¢qg are identical in form to those for the outlet parameters Vo, and g¢q. As
would be expected, the derived error equations show the same similarity. The inlet
error equations are easier to derive and can then be applied to both inlet and outlet

parameters.

CONCLUDING REMARKS

The basic purpose of this report is to provide a method for calculating the effects of
design errors and measurement errors on pump performance. Error equations were
developed which allow the amount of error in a given performance parameter to be cal-
culated from the amount of error in a given design or measured variable. These error
equations apply essentially to flow along streamlines or along individual blade elements.
The errors due to more than one source can often be combined and treated as a unit.
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For random errors, the uncertainty interval is used to indicate the combined effect of
a number of errors on a given performance parameter.

A number of uses of the error analysis procedures are pointed out in this report.
The error analysis is most often used to determine the accuracy of the performance
parameter values as an aid in interpreting design or measured data. The error analysis
is also used to determine the critical measurement, or critical step in a design proce-
dure, which introduces the greatest amount of error.

The sensitivity of most of the performance parameters to design errors increased
with increasing stagger angle or decreasing loading. Inducers, which have a combina-
tion of high stagger angle and light loading, are especially susceptible to design errors.
No regular pattern was noted in the trends of the sensitivity to measurement errors with
changes in stagger angle and loading.

The error equations, as written, apply to rotors. Modifications which allow them
to be applied to stators were pointed out.

A limitation of an error analysis of this type is that it depends on estimates of the
magnitudes of design errors or measurement errors. The calculated values of errors
in the performance parameters are only as accurate as the input error estimates.

For pump rotor test measurements, reasonably good estimates can usually be made
of the inherent accuracies of instrumentation such as pressure transducers and data
recording equipment. However, errors due to probe responses to pressure fluctuations,
flow fluctuations, and radial pressure gradients are difficult to evaluate. If a single
probe measurement is used, circumferential variations in pressures and velocities are
not accounted for. There is also the question of how well a stationary probe measure-
ment will average out the blade-to-blade variations in pressures and flow angles.

In a design procedure, it is difficult to assess the accuracy of certain inputs,
notably loss coefficient and deviation angle. Accuracy estimates are generally obtained
from correlations of previous test data, but the amount of suitable axial flow pump data
is rather limited. It is also difficult to estimate the accuracy of the outlet axial veloc-
ity, but for a different reason. In a design system, the outlet axial velocity is calcu-
lated from the requirements of radial equilibrium and continuity. This means that the
error in outlet velocity at a given blade element will be affected by the errors at other
blade elements.

The error equations were derived primarily for axial flow pumps, but are not
limited to axial flow. All of the design error equations and measurement error equa-
tions are correct for mixed flow impellers and centrifugal pumps if the meridional ve-
locity is substituted for axial velocity. However, the error equations apply to a design
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system and test procedures which are standard for axial flow pumps, but are not always
used for mixed-flow impellers.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, January 20, 1970,
128-31.
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APPENDIX A

SYMBOLS
diffusion factor 7 blade element efficiency
general performance parameter 10 flow coefficient
gravitational acceleration constant o] solidity
total head, ft; m ¥ head rise coefficient
head rise, ft; m w total-pressure loss coefficient
net positive suction head, ft; m Subscripts:
incidence angle, deg i ideal

cavitation number

radius, ft; m

rotor speed, ft/sec; m/sec

fluid velocity, ft/sec; m/sec
general design or measured variable

fluid angle, angle between fluid ve-
locity and axial direction, deg

uncertainty interval or finite dif-
ference

deviation angle, deg

m,n dummy variables

s stator

t tip

Z axial direction

0 tangential direction
1 rotor inlet

2 rotor outlet
Superscripts:

' relative to rotor
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APPENDIX B

ERROR ANALYSIS EQUATIONS

The equations derived for the error analysis are identified by ''des'' or '""meas, "
showing either a design error equation or a measurement error equation, respectively;
followed by symbols showing the parameters involved. Thus des - V2:V22 identifies
the design error equation giving the error in the performance parameter V2 for a unit
error in the design variable VZ2' The error equations are also identified by number,
with table I giving the equation number corresponding to each possible combination of
performance parameter and design or measured variable. Table I also gives the figure
numbers of the carpet plots corresponding to the equations. The table is complete for
all of the listed performance parameters and design variables or measured variables,
so the omission of a possible combination of variables means that the performance pa-
rameter involved is not a function of the input design or measured variable.

Design Equations

The design-error equations were derived from the following equations:

Vl = VZ]. secC Bl (Bl)
V= Vg tan g (B2)
N2 2 2
<V1> = Vg, +(Uy -V tan g)) (B3)
' ~1/ Y1
By =tan” " —— - tan B, (B4)
Vz1
Vy = Vo sec By (B5)
U
By = tan‘1<_2_ - tan 3’2> (B6)
Vza
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Vgg = Ug - Vg, tan gy

2 2

_ 12
Vy =Vzg + (U - Vg tan gy)

1
Vi =— (UgVpg - UyVyy)

Up
B(V!)2
VY _—; 21
Ui
n=Y¥
v

i Y_z T2Vg2 - T1V61
V1 orV'l(r1 +Ty)

D=

Design-Error Equations

The resulting differential formulas are the following:
Vi Vz1

AV
___1 =_T_ tan Bl AB].
\Z 180

des -V 1°Vy1

des - V{8 (fig. 1)

des - V2:VZZ (fig. 2(a))

AV2
__> = - COS Bz(tan 62 tan By - 1)
Va

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)
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des - szﬁé (fig. 2(b))

AV
) I sin By cos ,82 seczﬁ'2 Aﬂé (B16)
VZ 180
des - Vyirg (fig. 2(c))
AV2 Ar2
——=]) = sin g, cos Bz(tan Bé + tan 32) —=£ (B17)
Vo Ty
des - B'I:VZI (fig. 3(a))
AV
A,B'1 - . 180 coszﬁ'l(tan B} + tan B;) Z1 (B18)
T VZI
des - 3'1:31 (fig. 3(b))
AR = -coszﬁ' seCZB AB (B19)
17 1 1 1
des - By:Vyo (In fig. 3(a) substitute B4 for ,Bi and Bé for Bl.)
AV
ABy = - 280 cos?g,(tan g} + tan By) 22 (B20)
m Vza
des - By:By (In fig. 3(b) substitute By for By and B, for B.)
ABg = s28, se 26' ApB: (B21)
By = -€0s"fy sec”fy ABy

des - BgiTy (In fig. 3(a) substitute By for B’l and B"z for By multiply result by -1.)

Ar
ABy = 180 coszﬁz(tan 6'2 + tan By) _2 (B22)
7

Ta
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des - "Ui:VZI

AY/; AV
< ”UI)= 1 (B23)
Vi1 Va1
where
UV r
1761 1
Vi = 5 =— ¢ tan g, (B24)
U; Tt
Y;7=0 for B; =0
des - ;184 (fig. 4(a))
Ay,
N =-"_ sec By csc By ABy (B25)
Viq 180

In figure 4(a), the answer given is not a percent error in ¥y, but the error in I,Di is
given as a percentage of ¥4, corresponding to the form of equation (B25). Similarly,
figures 4(b) to (d) give errors in ¥; as percentages of ¥;,.

des - ¥;:Vgq (fig. 4(b))

AY. AV
<__1> = -tan B, cot By 22 (B26)
Yig Vz2
where
U,V T
2Y62 _T2
Wig = 29 =2 g, tan B, (B27)
I
Uy t

Yig =¥ forpy =

des - w.pi:B'z (fig. 4(c))
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AY -
__4_/3 =T seczﬁ'z cot By AB'Z (B28)
Vig 180

des - Y51y (fig. 4(d))

Ar2

AYy ,
= (2 + tan By cot 62) -—= (B29)
Via Ty

des - V:Vyy (Multiply values from fig. 5(a) by Zo"cpzl. The AY; term is obtained from
eq. (B23).)

— 2 : AVzy
Ay = Ay + we(tan 8] tan B - 1) (B30)
Vv
Z1
AV
Ay = ~w<p% Z1 for By = 0
z1
des - ¥:84 (Multiply value from fig. 5(b) by pr%; use eq. (B25) for Axpi.)
AU = T - 2 1 2
Vo= Ay +T§6 we{ tan B sec”fy ABy (B31)
des - z[/:VZZ, ,8;2, r, (see eqs. (B26), (B28), and (B29))
AY = Ay, (B32)
des - y:w
AY = - é (p% seczﬁ'1 Aw (B33)

des - n:Vyy (In fig. 2(a) substitute B'l for By and g; for 6'2, and multiply result
by -2; use eq. (B23) for Ay;. Answer is error in 7 as percent of 1 - n.)

AV

(_é"_?_) = JLA\pi + 2 coszﬁ'l(tan B} tan gy - 1) (B34)
i

- Vg1
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des - n:B; (In fig. 2(b) substitute By for By and gy for Bé, multiply result by -2;
use eq. (B25) for Azpi.)

(Anp \ .1 Ay, + T sin ,8'1 cos B'l seczﬁ1 ABy (B35)
i 90

des - 7:Vgo, '3'2’ ry (see eqgs. (B26), (B28), and (B29))

<ﬂ> =L Ay, (B36)
-7 2

des - n:w

(Ai> _ A (B37)
1-19 w

In equations (B38) and (B39) use cr(rl + r2)/2r1 in place of o if ry does not equal r,.

des - D:V,y (see fig. 6(a))

2 1 1 ' AVZ].
AD = - |(1 - D)cos Bl(tan Bi tan By - 1) + — tan By cos By (B38)
20
Z1
AV
AD = (1 - D)cos?8) —2%  for ;=0
Vz1
des - D:f4 (see fig. 6(b))
i . ? 1 2 1 2 '
= (1 - D)sin 8} cos B sec”B, +:—2— sec”py cos B! A8y (B39)
18 o)

In equations (B40) to (B45) use cr(r1 + r2)/2r2 in place of o if Ty does not equal
rlt
des - D:V,, (see fig. 6(c))

V! sin 8o\ AV
_laD-=- <1 + 2) 22 (B40)
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des - D:B'2 (see fig. 6(d))

V. sec .
_2AD=-"_[tan g + 2) Ag! (B41)
2 2
'1 180 20
des - D:r2
V! cos fi r, Y.\Ar
_TIAD= 2<2tan62+tan3'2— t 71 2
Va 20 Ty + Ty @9/ To
- M( AT (B42)
T+ Ty 9’)2/ o
where (see figs. 7(a) and (b))
cos B
M = 2 (B43)
20
N = 2 tan B, + tan 3'2 (B44)
An alternate form for §; = 0 is
\'A cos B r Ar
1 AD-= 2 {2 - —2—)tan g, + tan gy —2 (B45)
V'2 20 ry+ Ty ry

Measurement Equations
The measurement-error equations were derived from the following equations.

Where similar equations apply to corresponding inlet and outlet parameters (such as
V. and VZZ)’ the subscript 1 or 2 is omitted.

Vg = V cos B (B46)

V,=Vsing (B47)
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§0=——
Ut
12 _ 2 2

Sle

2y - VIV

"2
v}

w =

1
_ Va2 T2Ve2 - T1Ve:
]

1 ch'l(r1 + r2)

D=1

2
K = ngsv - Vi

"2
v})

Measurement Error Equations

The resulting differential formulas are

meas - 9”1, 2:V1, 9

(B48)

(B49)

(B50)

(B51)

(B52)

(B53)

(B54)

(B55)

(B56)
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A AV
L29_2Y (B57)
@ v

meas - @4 o:f3 (In fig. 1 multiply result by -1.)
1,2°P1, 2

AP) - T _tangap (B58)
o 180
meas - ¢4 2:Ut
AU
(éfe I (B59)
14 Ui
meas - B'l, 2:V1’ o (fig. 3(a))
AR = - 180 coszﬁ'(tan B' + tan B) AV (B60)
i v

meas - ,8'1 281 9 (In fig. 2(a) substitute g' for B, and B for Bé; multiply result by
_1) ’ s

AB' = cos?g'(tan B tan B - 1)AB (B61)

meas - B'l 9:T1 9 (In fig. 3(a)) multiply by -1; subtract r(dg’'/dr) where dg'/dr is de-
termined éraphically. )

AR = -{r 48" _ 180 .4s2gr(tan B + tan B)} Ar (B62)
dr 7 r

meas - B'l 9:U; (In fig. 3(a) multiply result by -1.)

AUt

AB' = 180 coszﬁ'(tan g' +tan g) —— (B63)
T Ui
meas - :U;
AU
<A_‘V) =2t (B64)
v U,
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meas - Y:AH

Ay\ _ A(AH) (B65)
v AH

In the following equations, ¥;1 and Y, are as defined in equations (B24) and (B27).

meas - ‘Pi‘V1

(A‘P> ! (B66)
Vi1 Vi

meas - ¥/;:5

Aybi =- E—(-)_ ?1 ABI (B67)

meas - uxi:Vz
AY . AV
( 11/1> =2 (B68)
Via/  Va
meas - :,Uizﬁz
r
2
Ay, =2 g, AB (B69)
1180 r 2772

meas -~ §;:ry (In fig. 4(a) multiply result by —dBl/drl; add (1/¢ Plde 1/drl).)

d dg
Ay, zp11<—1— —ﬁ +-— sec By esc By _.1>Ar1 (B70)
dr 180
¢qarg Ty

This expression is indeterminate for a By of 0. If By = 0,
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meas - Y;:Ty (In fig. 4(a) substitute By for B, multiply result by dfsz/dr2 and sub-
tract (1/(P2)(d€02/dr2)- )

do dg
Ay, = -xpm(_l_ 2 +-T_ sec By csc By —2>Ar2 (B71)

dr2 ry
meas - 11/i:Ut
AU,
All/i ==Y — (B72)
Ut
meas - 7:Vy, By, V2’ Bz, ry, Ty
<_A_TI> -1 AY; (B73)
n d/i
meas - 17:Ut
AU
(éﬂ) — (B74)
n Ut
meas - :AH
Aq) _ AL (B75)
n AH

meas - (._o:V1 (In fig. 2(a) substitute B'l for Bg, By for B'z, multiply result by 2(1 - w),
and add 2 times fig. 3(b).)

AV
Aw = -2 coszﬁ'1 [(1 - w)(tan B'l tan By - 1) + se0231]71 (B'76)
1

AVy

AT = - 2w coszﬁ'1 —_— for ;=0
Vi
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meas - ® By (In fig. 8(b) substitute B‘l for B'z and By for By; multiply result by

-(1-w).)

A = - & (1 - ®)cos?g](tan B} + tan BABy (B77)
meas - Z):V2 (fig. 8(a))
v AV,
—'— Aw = 2 cos 32 ,:(tan 32 tan B, - 1) + sec Bz] (B78)
V2 2
meas - Z):Bz (fig. 8(b))
v2
12 Aw = cos Bz(tan By + tan Bo)ABg (B79)
Va
meas - c—o:rl (see eqs. (B76) and (B77))
dv dg dH

A'(E:-[(Aw> 1, (Aw\ 1,28 sv Ary ( B8O)

Aw =0 for constant Vy» Hgy» and By (usually By =0)
meas - c—o:rz
_cos’Byfw, dpg dy (B81
Aw =2 - + Ar2 )
qo% ry dr2 dr2
- v A,
Aw=—2—-—— -t 1 L7 Ar2 for 61 =0 and constant H
ry dr2 dr2
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The term dz,b/dr2 denotes a change in ¥ produced by a change in only the outlet probe
radius, that is, g/Uf(de/drz) rather than g/Uf(d AH/drz). However, the radial var-
jations in H1 are usually small compared with those in HZ’ in which case the second
form can be used.

meas - Z):Ut (In fig. 2(c) substitute B'l for By, By for ,8'2, multiply result by -2w, and
add 2 coszﬁ'lxpi/go%.)

- —_ 1 1 ' 2.8 1’bi AUt
Aw = [-2w sin g cos By(tan gy + tan By) + 2 cos B1 i (B82)
?1 Ut
v, AU
AG = | -2 sinzﬁ'1 +2 coszB'1 1t for By =0
210
e7lt
meas - w:AH
2D = - 28 A(AR) (B83)

In equations (B84) and (B85) use cr(r1 + r2)/2r1 in place of ¢ if r, does not equal
ry.
meas - D:V, (fig. 6(a))

2 1 AVy
AD = -|(1 - D)cos“gj(tan g} tan B - 1) +E— cos f] tan By[—= (B84)
o A%
1

2 1 AVI
AD = (1 - D)cos B — for g, =0
A%
1

meas - D:ﬁ1 (fig. 9(a))

AD=-.T_ [(1 - D)cos?g)(tan B} + tan B) + — cos 3'1] ABy (B85)
180 20

34




In equations (B86) and (B87), use [o(ry + rz)]/Zr2 in place of ¢ if T,
equal ry.

meas - D:V, (fig. 9(b))

vy
V5

AV

—=AD = |cos B (tan g} tan 8, - 1)+——tan[3 cos S 2
2 2 2 2% 2 ] —— v

2

meas - D:, (fig. 9(c))

V!
1 AD = [cos Bz(tan ,82 + tan ,82) + - cos 32] ABg
VZ 180 20

meas - Diry (see eqs. (B84) and (B85))

av dg,
AD - <AD> 1, (AD\ ar,
AV, )dry Aﬁljdr

meas - Dir, (egs. (B86) and (B87))

AD - <AD >dV2 ( ap\%2|
= - + 2
AV, ) dr, ABZ/drz

does not

(B86)

(B87)

(B88)

(B89)

meas - D:U; (In fig. 2(c), substitute Bi for By, By for ,Bé, and multiply result by
(1 - D). Then substitute Bé for By, By for 6'2, multiply by V'2/V'1, and subtract from

from previous result.)

]

Vv
AD = |(1 - D)sin B'l cos B'l(tan B'l + tan B;) - _'3 sin [3"2 cos Bé(tan Bé + tan fy) [ ——
A%

1

AU,
Ui

(B90)
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meas - kiV, (See fig. 2(a). Substitute ,8'1 for By, By for B'z, multiply result by -2k,
and add 2 times result of fig. 3(b).)

AV
Ak = 2[k cos Bl(tan ,81 tan By - 1) - cos Bl sec Bl:l (B91)
1
AV1
Ak =-2(1 + k)cos Bl —_ for Bl =0
\"

1

meas - k:ﬁ1 (See fig. 8(b). Substitute B’l for 3'2 and B, for By, and multiply result
by k.)

K = kéf(—) cosp(tan @) + tan B;)AB, (B92)

Ak =k-T sin 28] AB; for By =0
180

meas - kir (See fig. 2(c). Substitute ,8’1 for B, and By for [312, multiply by -2k,
and subtract (1/r 1)(dk/dr 1).)

dk‘lAr1

P (B93)

Ak = -[21{ sin ,8' cos /31(tan ,81 + tan B) + ry

meas - k.HSV

Ak =28 AH_ (B94)
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APPENDIX C

APPLICATION OF THE MEASUREMENT ERROR ANALYSIS
TO SPECIFIC TEST DATA

Two data points were selected for use in this example: the design point of the
highly loaded axial rotor of references 3 and 4 and a typical operating point for the 84°
helical inducer of reference 5. The rotor design point had an overall ¢ of 0.451 and
an overall ¥ of 0.391, and the inducer operating point had an overall ¢ of 0. 0656
and an overall s of 0.117. For both of these points, the flow was noncavitating. The
849 inducer has near the highest blade angle used in current pump designs, whereas
the rotor of references 3 and 4 has relati%lely low blade angles because of the high flow
coefficient, and also has high loading.

The values of measurement accuracy used in this example are estimates which in-
clude the effects of more sources of error than just the instrumentation accuracies as
given in references 4 and 5. The possible sources of error (pressure and flow fluctua-
tions, etc.) are discussed in the CONCLUDING REMARKS section of this report. The
results should give an idea of what accuracy to expect in current pump test data. The
measurement errors assumed i‘n this study are listed in table III.

TABLE III. - MEASURED ERROR ESTIMATES

[Angle, j:lo; radius, 1 percent of passage

height.
Measured variable |Highly loaded 84° Inducer
rotor (a)
(a) ey
+ft +m
+ft +tm
Head rise 4 1.2 7 2
(180) | (55) [(210) (64)
Inlet pressure 3 .9 .5 .15
‘ b240) |P(73) |P70) | Pe2n)
“ Inlet velocity head 1.5 .5 .5 .15
49) | (15) | (4.2)| (1.3)
Outlet velocity head 3 .9 2 .6
(120) (37) (58) (18)

¥ L

'?f 2parenthetical values are maximum readings at the
test points.

P Absolute.
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Using these estimates of the measurement errors, the amounts of error in the per-
formance parameters due to the various measurement errors were calculated. The re-
sults are shown in figures 10 to 15 for the performance parameters Vi ¥ w, 8, and
@9s and the measurements of By V2, Bz, and AH. These figures show the perform-
ance data with solid lines outlining the limits of probable error as calculated from the
error equations.

To illustrate the computations, consider the errors in & (or Bé) due to errors in
V2 for the highly loaded rotor. The sensitivity of § to errors in V2 is given in equa-
tion meas - B'z:Vz and figure 3(a). This figure shows that for ro = 4.26 inches(10. 8 cm)
at design flow, where 62 = 41.7° and 3'2 = 49, OO, a 1 percent error in V2 will give
a -0.51°% error in 6. From the error of +3 feet (0.9 m) in 84 feet (26 m) of outlet ve-
locity head (corresﬁonding toa V, of 73. 5 ft/sec (22.4 m/sec)), the error in Vy is
1. 8 percent. This error in V2 results in a +0. 9° error in 6. The corresponding
limits of probable error are shown as solid lines in figure 14(a), which, for the radius
r, = 4.26 inches (10.8 cm), pass through 0 = 16. 752 + 0.9° and 6 = 16. 75° - 0. 9°,

Figures 10 to 14 show the uncertainty intervals in the performance parameters due
to individual measurement errors. The differences in the relative magnitude of errors
in comparing the rotor performance to the inducer performance may be due either to
differences in the accuracy of the measurements or to differences in the sensitivity to
measurement errors. In figure 13(a), the larger uncertainty intervals in ®q for the
inducer (when compared on the basis of percentage of the nominal @9 value) are a re-
sult of the poorer percentage accuracy assumed for the inducer V2 measurement. The
other discernable differences in figures 10 to 14 can be explained by the effects of a
change in stagger angle on the sensitivity to errors; these effects are listed in table II.
For example, figures 10(a) and (c) show that the errors in ¥; due to measurement
errors in Bl and Bz are smaller for the inducer; this agrees_with the predicted trend
of less sensitivity at high stagger angles. The same trend for w appears in figures
12(a) and (c). Further examples are the greater errorsin ¢, and 6 due to errors in
By for the inducer, and the reduced errors in 6 due to errors in Vy.

Another item of interest is the relative importance of the different measurement
errors in contributing to the total errors of the various performance parameters. For
the highly loaded rotor, By Vo and By contribute about equally to errors in v,

(figs. 10(a) to (c)). But for the inducer, the influence of g, and B, errors is dimin-
ished, leaving the V2 measurement as the main source of error in v The situation
is similar for the performance parameters w (figs. 12(a) to (d)) and n (not shown),
where the B4, B9, Vo, and AH measurements contribute about equal errors for the
conventional rotor performance, but only the V2 and AH measurements are impor-
tant sources of error for the inducer performance. In fact, for the inducer, V2 was
the main source of error for most of the performance parameters. To get better data,
improving this particular measurement would be of prime importance. For the highly
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loaded rotor, no one measurement could be singled out as being the greatest source of
error.

Since the errors in rotative speed are negligible, the errors in y (fig. 11) are
caused almost entirely by errors in the measurement of head rise. Consequently, there
is no change of sensitivity with blade angle. The percentage errors in y are about the
same for the rotor and the inducer, although the different scales of the graphs make
them appear different.

For the test configurations used, there was no energy addition upstream of the
blade inlet, so the errors in Bl do not actually affect the dxi values and have a smaller
effect on the w values than shown in figure 12(a). However, under other conditions
the relative size of the errors due to Bl might be important, so the curves are included
for comparison purposes. For all the performance parameters, the effect of radial
probe positioning errors were small, and are not shown in the figures. Also, for Bl
nearly equal to zero, the effect of errors in V1 are negligible.

The errors in the performance parameters due to the combined effects of all
measurement errors are shown in figure 15. Equation (3) is used to calculate the total
amount of error, as it is assumed that all of the measurement errors are random in
nature. Thus the solid lines in the figures show the uncertainty intervals in the per-
formance parameters. As errors in Bl did not actually affect the values of lpi and
had only a slight effect on the values of w, those particular errors were not included
in the calculations. It is interesting to note that the errors in ¢ and Y; are about the
same. Although the magnitude of the errors in deviation angle are smaller for the in-
ducer, they are probably just as critical because of the greater sensitivity to errors in
deviation angle at high blade angles, as noted in the design error equations. No other
significant differences were found between the magnitude of errors in the inducer and in
the axial rotor.

An error analysis need not be restricted to the parameters considered herein. For
the data of references 3 to 5, both the Venturi flow rate and the mass averaged parame-
ters are amenable to error analysis techniques. The accuracy of the flow rate can be
determined from estimates of the accuracy in the measurement of pressure across the
Venturi. The errors in the mass averaged parameters can be determined using equa-
tion (3) to get the combined effect of individual errors at several radial positions. Both
are relatively simple applications of error analysis techniques.
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(c) Outlet axial velocity (eq. (B40)).
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(a) Factor M (eqs. (B42) and (B43)).

() Factor N {egs. (B42) and (Bad).

- Factors M and N as functions of B B, and o.

Figure 7.
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of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information cansidered important,
complete, and a lasting eontribution to existing
knowledge. :

TECHNICAL NOTES:- Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to mérit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546




